| Русский Русский | English English |
   
Главная
29 | 12 | 2024
2024, 02 февраль (February)

DOI: 10.14489/hb.2024.02.pp.003-007

Искендерзаде Э. Б., Ахмедова Ш. В.
ИССЛЕДОВАНИЕ ТОЧНОСТИ ИЗМЕРЕНИЯ ДИАМЕТРА С ПОМОЩЬЮ ЦЕХОВЫХ КООРДИНАТНО-ИЗМЕРИТЕЛЬНЫХ МАШИН
(c. 3-7)

Аннотация. Исследована возможность повышения точности измерения с помощью координатно-измерительных машин (КИМ). Повышение точности измерения размеров деталей достигается за счет взаимной компенсации погрешности, возникающей в КИМ с артикуляционной штангой из-за изгиба стержня под действием приложенной силы и погрешности из-за временного дрейфа КИМ, возникшей после калибровки.Получены формулы для выбора значения силы, прилагаемой к шаровидному щупу в КИМ с артикуляционным звеном, в зависимости от длины измеряемой детали и времени, прошедшего после момента последней калибровки КИМ.

Ключевые слова: координатно-измерительная машина; точность измерения; компенсация погрешностей; временной дрейф; калибровка.

 

Iskenderzade E. B., Akhmedova Sh. V.
INVESTIGATION OF THE ACCURACY OF DIAMETER MEASUREMENT USING SHOP COORDINATE MEASURING MACHINES
(pp. 3-7)

Abstract. The possibility of increasing the accuracy of measurement using coordinate measuring machines is investigated. An increase in the accuracy of measuring the dimensions of parts is achieved by mutual compensation of the error that occurs in the CMM with the articulation rod due to the bending of the rod under the action of the applied force and the error due to the time drift of the CMM that occurred after calibration. Formulas are obtained for selecting the value of the force applied to a spherical probe in a CMM with an articulation link depending on the length of the measured part and the time elapsed after the last calibration of the CMM.

Keywords: Coordinate measuring machine; Measurement accuracy; Error compensation; Time drift; Calibration.

Рус

Э. Б. Искендерзаде, Ш. В. Ахмедова (Национальное Аэрокосмическое Агентство, Баку, Азербайджанская Республика) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Eng

E. B. Iskenderzade, Sh. V. Akhmedova (National Aerospace Agency, Baku, Republic of Azerbaijan) E-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.  

Рус

1. Benciolini B., Vitti A. A new quaternion based kinematic model for the operation and the identification of an articulated arm coordinate measuring machine inspired by the geodetic methodology // Mechanism and machine theory. 2017. 112. P. 192 – 204.
2. Geometry structure optimization of hexagonal pyramidal full tensor magnetic gradient probe / M. Shen, D. Cheng, Z. An, Y. Wang, et al // IEEE transactions on magnetics. 2016. 52(9). P. 1 – 7.
3. Luo Z., Liu H., Tian K., Li D. Error analysis and compensation of measuring force of the articulated arm coordinate measuring machine // Chinese journal of scientific instrument. 2015. 38(5).
4. Sensor prototype to evaluate the contact force in measuring with coordinate measuring arms / E. Cuesta, A. Telenti, H. Patino, D. Gonzalez-Madruga, et al. // Sensors 2015. 15(6). P. 13242 – 57.
5. Du C., Xu Q., Feng X., Zhang J. Error analysis and modification on the probe system of coordinate measuring machine // Journal of Changzhou institute of technology 2016. V. 3. P. 33 – 7.
6. Luo Z., Liu H., Li D., Tian K. Analysis and compensation of equivalent diameter error of articulated arm coordinate measuring machine // Measurement and control. 2018. V. 51(1–2). P. 16 – 26.
7. Cuesta E., Alvarez B., Sanchez-Lasheras F., Gonzalez-Madruga D. A statistical approach to prediction of the CMM drift behaviour using a calibrated mechanical artefact // Metrol. Meas. Syst. V. XXII (2015). Is. 3. P. 417 – 428.
8. Ali S. H. R. The influence of fitting algorithm and scanning speed on roundness error for 50 mm standard ring measurement using CMM // Metrol. Meas. Syst. 2008. 15(1). P. 33 – 53.
9. Wozniak A. Simple method of 3D error compensation of triggering probes on coordinate measuring machine // Metrol. Meas. Syst. 2006. 13(3). P. 289 – 299.
10. Poniatowska M. Determining the uncertainty of fitting discrete measurement data to a nominal surface // Metrol. Meas. Syst. 2008. 15(4). P. 595 – 606.
11. Longstaff A. P., Fletcher S., Parkinson S., Myers A. The role of measurement and modelling of machine tools in improving product quality // Int. J. Metrology and quality engineering. 2013. 4(3). P. 177 – 184.
12. Barkallah M., Louati J., Haddar M. Evaluation of manufacturing tolerance using a statistical method and experimentation// Int. J. Simulation Modelling. 2012. 11(1). P. 5 – 16.

Eng

1. Benciolini B., Vitti A. (2017). A new quaternion based kinematic model for the operation and the identification of an articulated arm coordinate measuring machine inspired by the geodetic methodology. Mechanism and machine theory, 112, 192 – 204.
2. Shen M., Cheng D., An Z., Wang Y. et al. (2016). Geometry structure optimization of hexagonal pyramidal full tensor magnetic gradient probe. IEEE transactions on magnetics, 52(9), 1 – 7.
3. Luo Z., Liu H., Tian K., Li D. (2015). Error analysis and compensation of measuring force of the articulated arm coordinate measuring machine. Chinese journal of scientific instrument, 38(5).
4. Cuesta E., Telenti A., Patino H., Gonzalez-Madruga D. et al. (2015). Sensor prototype to evaluate the contact force in measuring with coordinate measuring arms. Sensors, 15(6), 13242 – 57.
5. Du C., Xu Q., Feng X., Zhang J. (2016). Error analysis and modification on the probe system of coordinate measuring machine. Journal of Changzhou institute of technology, 3, 33 – 7.
6. Luo Z., Liu H., Li D., Tian K. (2018). Analysis and compensation of equivalent diameter error of articulated arm coordinate measuring machine. Measurement and control, 51(1–2), 16 – 26.
7. Cuesta E., Alvarez B., Sanchez-Lasheras F., Gonzalez-Madruga D. (2015). A statistical approach to prediction of the CMM drift behaviour using a calibrated mechanical artefact. Metrology and Measurement Systems, 22(3), 417 – 428.
8. Ali S. H. R. (2008). The influence of fitting algorithm and scanning speed on roundness error for 50 mm standard ring measurement using CMM. Metrology and Measurement Systems, 15(1), 33 – 53.
9. Wozniak A. (2006). Simple method of 3D error compensation of triggering probes on coordinate measuring machine. Metrology and Measurement Systems, 13(3),289 – 299.
10. Poniatowska M. (2008). Determining the uncertainty of fitting discrete measurement data to a nominal surface. Metrology and Measurement Systems, 15(4), 595 – 606.
11. Longstaff A. P., Fletcher S., Parkinson S., Myers A. (2013). The role of measurement and modelling of machine tools in improving product quality. International Journal of Metrology and Quality Engineering, 4(3), 177 – 184.
12. Barkallah M., Louati J., Haddar M. (2012). Evaluation of manufacturing tolerance using a statistical method and experimentation. International Journal of Simulation Modelling, 11(1), 5 – 16.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/hb.2024.02.pp.003-007

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/hb.2024.02.pp.003-007

and fill out the  form  

 

.

 

 
Rambler's Top100 Яндекс цитирования